All quotes from Kevin Kelly’s

I found that these high-tech computer networks were not deadening the souls of early users like me; they were filling our souls. There was something unexpectedly organic about these ecosystems of people and wires.

There is no communication between machines without extruded copper nerves of electricity. There is no electricity without mining veins of coal or uranium, or damming rivers, or even mining precious metals to make solar panels. There is no metabolism of factories without the circulation of vehicles. No hammers without saws to cut the handles; no handles without hammers to pound the saw blades. This global-scale, circular, interconnected network of systems, subsystems, machines, pipes, roads, wires, conveyor belts, automobiles, servers and routers, codes, calculators, sensors, archives, activators, collective memory, and power generators—this whole grand contraption of interrelated and interdependent pieces forms a single system.

Large systems of technology often behave like a very primitive organism. Networks, especially electronic networks, exhibit near-biological behavior.

Scientists had come to a startling realization: However you define life, its essence does not reside in material forms like DNA, tissue, or flesh, but in the intangible organization of the energy and information contained in those material forms. And as technology was unveiled from its shroud of atoms, we could see that at its core, it, too, is about ideas and information. Both life and technology seem to be based on immaterial flows of information.

What I consider to be the essential quality of the technium: this idea of a self-reinforcing system of creation. At some point in its evolution, our system of tools and machines and ideas became so dense in feedback loops and complex interactions that it spawned a bit of independence. It began to exercise some autonomy.

After 10,000 years of slow evolution and 200 years of incredible intricate exfoliation, the technium is maturing into its own thing. Its sustaining network of self-reinforcing processes and parts have given it a noticeable measure of autonomy. It may have once been as simple as an old computer program, merely parroting what we told it, but now it is more like a very complex organism that often follows its own urges.

The technium contains 170 quadrillion computer chips wired up into one mega-scale computing platform. The total number of transistors in this global network is now approximately the same as the number of neurons in your brain. And the number of links among files in this network (think of all the links among all the web pages of the world) is about equal to the number of synapse links in your brain. Thus, this growing planetary electronic membrane is already comparable to the complexity of a human brain. It has three billion artificial eyes (phone and webcams) plugged in, it processes keyword searches at the humming rate of 14 kilohertz (a barely audible high-pitched whine), and it is so large a contraption that it now consumes 5 percent of the world’s electricity.

Because the technium is an outgrowth of the human mind, it is also an outgrowth of life, and by extension it is also an outgrowth of the physical and chemical self-organization that first led to life. The technium shares a deep common root not only with the human mind, but with ancient life and other self-organized systems as well.

The technium is now as great a force in our world as nature, and our response to the technium should be similar to our response to nature. We can’t demand that technology obey us any more than we can demand that life obey us. Sometimes we should surrender to its lead and bask in its abundance, and sometimes we should try to bend its natural course to meet our own. We don’t have to do everything that the technium demands, but we can learn to work with this force rather than against it.

Chimpanzees made (and of course still make) hunting tools from thin sticks to extract termites from mounds and slammed rocks to break nuts. Termites themselves construct vast towers of mud from their homes. Ants herd aphids and farm fungi in gardens. Birds weave elaborate, twiggy fabrics for their nests. And some octopuses will find and carry shells for portable homes. The strategy of bending the environment to use it as if it were part of one’s own body is a half-billion-year-old trick at least.

All technology—the chimp’s termite-fishing spear and the human’s fishing spear, the beaver’s dam and the human’s dam, the warbler’s hanging basket and the human’s hanging basket, the leaf-cutter ant’s garden and the human’s garden—are all fundamentally natural. We tend to isolate manufactured technology from nature, even to the point of thinking of it as antinature, only because it has grown to rival the impact and power of its home. But in its origins and fundamentals, a tool is as natural as our life.

Technology’s dominance ultimately stems not from its birth in human minds but from its origin in the same self-organization that brought galaxies, planets, life, and minds into existence. It is part of a great asymmetrical arc that begins at the big bang and extends into ever more abstract and immaterial forms over time. The arc is the slow yet irreversible liberation from the ancient imperative of matter and energy.

When we spy our technological fate in the distance, we should not reel back in horror of its inevitability; rather, we should lurch forward in preparation.

Technology is a type of thinking; a technology is a thought expressed.

Living organisms and ecosystems are characterized by a high degree of indirect collaboration, transparency of function, decentralization, flexibility and adaptability, redundancy of roles, and natural efficiency; these are all traits that make biology useful to us and the reasons why life can sustain its own evolution indefinitely. So the more lifelike we train our technology to be, the more convivial it becomes for us and the more sustainable the technium becomes in the long run. The more convivial a technology is, the more it aligns with its nature as the seventh kingdom of life.

The evolution of new technologies is inevitable; we can’t stop it. But the character of each technology is up to us.

So what does technology want? Technology wants what we want—the same long list of merits we crave. When a technology has found its ideal role in the world, it becomes an active agent in increasing the options, choices, and possibilities of others. Our task is to encourage the development of each new invention toward this inherent good, to align it in the same direction that all life is headed.

The technium wants what evolution began. In every direction, technology extends evolution’s four-billion-year path. By placing technology in the context of that evolution, we can see how those macroimperatives play out in our present time. In other words, technology’s inevitable forms coalesce around the dozen or so dynamics common to all extropic systems, including life itself.